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ABSTRACT
The purported consensus that human greenhouse gas emissions have causally
dominated the recent climate warming depends decisively upon three lines of
evidence: climate model projections, reconstructed paleo-temperatures, and the
instrumental surface air temperature record. However, CMIP5 climate model
simulations of global cloud fraction reveal theory-bias error. Propagation of this
cloud forcing error uncovers a r.s.s.e. uncertainty 1σ ≈ ±15 C in centennially
projected air temperature. Causal attribution of warming is therefore impossible.
Climate models also fail to reproduce targeted climate observables. For their part,
consensus paleo-temperature reconstructions deploy an improper ‘correlation =
causation’ logic, suborn physical theory, and represent a descent into pseudo-
science. Finally, the published global averaged surface air temperature record
completely neglects systematic instrumental error. The average annual systematic
measurement uncertainty, 1σ = ±0.5 C, completely vitiates centennial climate
warming at the 95% confidence interval. The entire consensus position fails
critical examination and evidences pervasive analytical negligence.

Keywords: Climate, systematic error, GCM, proxy, air temperature,
pseudoscience

1. INTRODUCTION
The modern concern about human-caused global warming dates approximately from
the 1979 Charney Report to the US National Research Council. [1] The Charney
committee described how carbon dioxide (CO2) and other greenhouse gas (GHG)
emissions may influence climate, but did not acknowledge the contemporary scientific
debate about the magnitude of any effect. [2-10] In 1989, the US Environmental
Protection Agency warned of myriad disasters to ostensibly follow CO2 emissions;
[11] a pessimism that has commandeered the modern consensus. [12, 13]

The consensus that human CO2 emissions are dangerous rests upon three central
elements of contemporary climatology: the climate modeling that imputes physical
causality into recent air temperature trends, proxy reconstructions of paleo air
temperatures, and the instrumental record that provides the surface air temperatures.
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Results from all three have been combined to conclude that the rise in global averaged
surface air temperature (GASAT) since about 1880 is unprecedented, is dangerous,
and is caused by industrial GHG emissions. [12-16] 

In this paper, climate models, proxy paleo-temperature reconstructions, and the
surface air temperature record are critically examined in turn. They are each and all
found to neglect physical error, or in the case of consensus paleo-temperature
reconstructions to neglect physics itself. The normative certainties flourish on this
neglect.

2. RESULTS AND DISCUSSION
2.1 General Circulation Models 
On 23 June 1988 the US Senate Committee on Energy and National Resources hosted
testimony on, “The Greenhouse Effect and Climate Change.” Figure 1a shows a
central element of this testimony: three alternative GASAT projections extending to
the year 2020, simulated using the Goddard Institute for Space Studies (GISS) climate
Model II. In scenario “A,” surface air temperature was driven by a future rate of global
CO2 emission that was increased beyond the 1988 rate, in “B” the 1988 rate continued
unabated, and in “C” the 1988 rate was drastically curtailed. Since then, whether the
GISS Model II scenario B correctly predicted the post-1988 global air temperature
trend has been a matter of discussion. [17-20]

Figure 1a, as it was presented to Congress and as it appeared in the original peer-
reviewed paper, has no uncertainty bars. [21] However, “even in high school physics,
we learn that an answer without “error bars” is no answer at all.” [22] The missing
part of the GISS Model II answer is described next.
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Figure 1: a. (points), the GISS Model II projections of future global averaged surface
air temperature anomalies for scenario A, B, and C as presented in 1988 (see text).
[21, 34] The lines were calculated using eq. 1 and the original forcings but without
volcanic explosions (FCO2 = 0.42; F0 = 33.946 Wm-2). b. confidence intervals (CIs)
obtained using eq. 1 to propagate the ±4 Wm-2 annual average CMIP5 tropospheric

cloud forcing error through the same projected scenarios (see 2.1.3). [30]



2.1.1 Cloud error
It is very well known that climate models only poorly simulate global cloud fraction,
[23-27] among other observables. [28] This simulation error is due to incorrect
physical theory. [29, 30] Cloud error due to theory-bias means the models incorrectly
partition the amount and distribution of energy in the atmosphere. This in turn means
the air temperature is modeled incorrectly. The incorrectly simulated cloud fraction of
state-of-the-art CMIP5 climate models produces an average annual theory-bias error
in tropospheric thermal energy flux of ±4 Wm-2, [27] which magnitude has not
materially diminished between 1999 and 2012. [27, 29-33]

2.1.2 Theory-bias cloud error is a continually refreshed initial conditions error.
Climate is projected through time in a step-wise fashion. Each modeled time-step
provides the initial conditions for the subsequent step. Because of theory-bias error,
each calculational step delivers incorrectly calculated climate magnitudes to the
subsequent step, so that every step initializes with incorrect magnitudes. These
incorrect magnitudes are then further extrapolated, but again incorrectly. In a
sequential calculation, calculational error builds upon initial error in every step, and
the uncertainty accumulates with each step. [29, 30] However, no published model
projection of terrestrial air temperatures has ever discussed or included propagated
error. [30]

2.1.3 The propagated uncertainty due to theory-bias cloud error.
The GASAT anomaly projections of general circulation climate models (GCMs) can
be accurately simulated using the linear equation:

, (1)

where ∆T is the GASAT anomaly (K), fCO2
varies among GCMs and is the fraction of

greenhouse warming due to water-vapor enhanced CO2 forcing, 33 K is the net
unperturbed terrestrial surface greenhouse temperature, F0 is the total GHG forcing of
the zeroth projection year, and Fi is the annual change in GHG forcing in each of “n”
projection years. [30, 35] The success of this equation shows that climate models
project air temperature as a linear extrapolation of GHG forcing. [30] In a sequential
linear calculation, the final uncertainty is the root-sum-square of the step-wise errors.
[36-38] In a linear air temperature projection, the running total of uncertainty in the

simulated GASAT due to theory-bias error is then , where ei is the error

in the ith step, across a simulation of “n” steps. It is a standard of physics that
predictive reliability is evaluated by propagating error. Entering the average ±4 Wm-2

of CMIP5 cloud forcing error into eq. 1 allows calculation of confidence intervals (CI)
for the GASAT projection of any climate model.
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Figure 1b shows the CI from ±4 Wm-2 of thermal flux error propagated through the
1988 GISS Model II global air temperature projections (fCO2

= 0.42). The CI
uncertainty increases much faster than the projected GASAT because the ±4 Wm-2 of
flux error is ±110× larger than the 0.036 Wm-2 average annual increase in GHG
forcing since 1979. [39]

Scenarios A, B, and C are completely submerged within the strongly overlapping
CIs. Therefore, they are not distinguishable. None of them can be tested by
comparison against any conceivable trend in global air temperatures. Therefore, they
are not falsifiable. As the projections are neither predictive nor falsifiable, they are
physically meaningless. Analogous “error bars” will attend any CMIP5 projection.
Applying the standard criterion of physics, CMIP5 climate models are predictively
unreliable.

2.1.4 Tests of climate model simulations.
Advanced GCMs express the physical theory of climate. All meaning in science
derives from a falsifiable theory. The 2007 “Summary for Policymakers,” of the UN
Intergovernmental Panel on Climate Change (the IPCC) says, “Most of the observed
increase in globally averaged temperatures since the mid-20th century is very likely
due to the observed increase in anthropogenic greenhouse gas concentrations.”
(original emphasis), where “very likely” means more than 90% probable. [40] The
IPCC continues, “There is considerable confidence that climate models provide
credible quantitative estimates of future climate change, particularly at continental
scales and above.” [13] As the assignment of causality for present and future climate
change rests entirely on the physical accuracy of climate model simulations, then
clearly the IPCC judges GCMs able to produce accurate and quantitative estimates of
future climate changes.

2.1.4.1 Perfect Model Tests.
In a perfect model test, a GCM is used to project a reference climate, and then
evaluated by its ability to predict that very same climate. These conditions are most
favorable to the model because a GCM is a perfect model of its own reference climate.
Typically, the predictive test starts with small offsets of the original initial conditions
to mimic imperfectly known input observables.

The CMIP3-level HadCM3 was subjected to a perfect model test in 2002. [41]
Figure 2 shows one outcome: the correlation between the predicted and reference air
temperatures dropped to ~0.25 after one year. By projection year eight, the correlation
was zero. 

The dashed line in Figure 2 shows the air temperature predictions of a random
persistence model, which compared favorably with the HadCM3 through the nine
projection years.
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The HadCM3 was also unsuccessful predicting its own global average
precipitation, and its own El Niños. Once again, the random persistence model did as
well. Nevertheless, the HadCM3 was subsequently employed in the 2007 IPCC 4AR
to predict climate futures.

In 2000, a similar perfect model test proved that the Canadian CCCma climate
model was unable to predict its own global air temperatures. [42] Both studies
concluded that even with perfect climate models, the ability to predict global climate
would be non-existent. To this writing, GCMs have invariably failed perfect model
reliability tests.

2.1.4.1.1 The general significance of a failed perfect model test.
This insight into the impact of initial-value errors is of general significance because in
a step-wise climate projection the magnitudes of each prior climate state provide the
initial conditions of the subsequent state. The theory-bias errors of climate models
means that prior states are incorrectly represented. Therefore, subsequent states will
initialize with incorrect physical variables. Theory bias ensures the erroneous
variables will be again projected incorrectly. That is, when theory-bias error is present
an initial conditions error of unknown magnitude is propagated into and through every
single simulation time-step. The theory-bias initial condition error can never be
removed using model equilibration or spin-up, because initial condition errors are
sequentially produced and propagated within the model itself at every single
simulation step.
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Figure 2. Full line: the HadCM3 perfect model test, re-predicting its own global
mean surface air temperature across nine years. Dashed line: the random persistence

model. The data are from Figure 6a in [41]. 



2.1.4.1.2 Perfect Model Tests in the IPCC 4AR.
Chapters 8 and 9 of the 4AR discuss the physics of climate and evaluate whether
climate models are reliable enough to attribute recent air temperature warming to
human GHG emissions. [13, 43] Chapters 10 and 11 make model-based predictions
about the effects of GHG emissions on future climate.

IPCC 4AR chapters 8 and 9 should have acknowledged the failed HadCM3 and
CCCma perfect model tests. However, they are nowhere mentioned. The author of the
2002 HadCM3 perfect model study is cited 15 times in AR4 chapters 8-11, but the
perfect model paper itself is never cited. The reported failure of the CCCma model is
also never cited, even though Boer’s other work is extensively referenced. The very
4AR chapters that purported to evaluate climate models was completely silent about
failed perfect model tests.

In 2008, twenty-one CMIP3-level GCMs were subjected to perfect model tests that
included, “8850 years of simulated data from the control runs of 21 coupled climate
models.” [44] These were the very same climate models the IPCC claimed could
produce, “credible quantitative estimates of future climate change.” As perfect
models, the CMIP3 GCMs proved able to predict global air temperatures for five
years, but not for twenty-five years. Precipitation was immediately unpredictable. 

2.1.4.2 Real World Tests.
The 2007 4AR presented CMIP3-level hindcasts of 20th century temperatures and
precipitation simulated at the points of a global grid. In a test comparison with known
real-world observables, the 20th century hindcasts of six GCMs were evaluated against
the known 20th century climate at 58 locations scattered across the globe. [45, 46] 

From the four grid-points surrounding each of the 58 locales, a linear combination
of the hindcasted trends in temperature or precipitation of the 20th century were fitted
to the observational record. For the temperature trends at the four surrounding grid 
points, i, j, k, m, the hindcasted GCM were to fitted to the observed local
temperature trend,  as,

(2)

where a, b, c, and d are fitted coefficients and always sum to unity. Eq. 2 describes an
iteratively adjusted fit calculated to make a closest possible match to the observed
local temperature. Each fit-reconstructed local temperature trend is then,

(3)

where ai, bj, ck, dm represent the final best-fit coefficients. The 20th century trends of
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obs’d were then compared. The methodology is valid because measured air
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Figure 3 shows the results for Vancouver, British Columbia, which warmed by a
full degree in the 20 years after 1900, then cooled by 2 degrees for 40 years, and finally
warmed again to finish almost where it started. None of the six tested climate models
reproduced this variability. Further, although each model used the same physical
theory to represent the same climate, the projected trends spread across nearly 2.5 C.

The usual strategy of climate prediction is to represent temperatures as anomalies.
The assumption behind this strategy is that climate model error is constant. [50-52]
Thus, constructing anomalies should subtract away the errors and uncover a physically
reliable temperature change.

The right panel of Figure 3 shows the anomaly trends for Vancouver, BC. Once
again, the observed variability of Vancouver’s climate is not reproduced. Low-error
anomalies should show similar trends. However, the simulation anomalies disagree by
nearly a full degree. The inset shows that the HadCM3 anomaly wanders about
without any particular correspondence to the observed temperature, as expected from
the failed 2002 perfect model test. 

Although Vancouver cooled at an average rate of -0.05 C per decade during the 20th

century, all the climate models predicted increasing 20th century temperatures (Table
1). These results are typical of the entire study, which found that the 20th century
CMIP3 model hindcasts were inaccurate in every region tested.
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Figure 3: Left panel: (—), the 20th century temperature trend observed at Vancouver,
British Columbia. Dashed and dotted lines: the Vancouver hindcasts by five CMIP3

climate models (see labels). Right panel, the 20th century observed and predicted
anomaly trends for Vancouver (1951-1980 mean). Right panel inset: HadCM3

hindcast for the years 1950-2000. (11-year smoothing throughout.)



However, the IPCC claim that climate models produce more quantitatively reliable
results “at continental scales and above.” [13] This claim was also tested by extending
the CMIP3 comparison to the continental USA. [45, 53] The result was that the
hindcasts “[did] not correspond to reality any better” on the continental scale than
they did at the 58 local scales. [54] 
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Table 1: Simulated and Observed 20th Century Trends for Vancouver, BC

The CIs of Figure 1b, the failed perfect model tests (Figure 2), and the failed hindcasts
(Figure 3) demonstrate that advanced GCMs are neither predictive nor falsifiable, and
are not reliable. Their air temperature projections have no obvious physical meaning.
[55] Any attribution of the GASAT increase to human GHG emissions has been and
remains without any scientific warrant.

2.2 Proxy paleo-temperature reconstructions
Paleo-temperature reconstruction — paleo-thermometry — estimates the temperature
of past climates. As measurements are not available from distant times, the recovery
of ancient temperatures requires proxies. Tree-ring series dominate air temperature
proxies but proxy series typically include other annually layered temperature-sensitive
bio- and geo-structures. 

2.2.1 The methodological basis of tree-ring paleo-thermometry.
Trees growing in a sub-optimum thermal climate produce annual growth rings that are
narrow and/or of low density. Climates closer to the optimum growth temperature
produce trees with relatively thicker or denser annual rings. A relationship of
temperature with tree growth is apparent, [56-58] and in principle annual tree rings
should record significant transitions of local growth conditions, including those of
climate. 

Candidate trees used to reconstruct past temperatures are those growing in a cold
climate at high latitudes or high altitudes. The candidate trees are judged to be
suffering from ‘temperature limited’ growth, following a qualitative assessment of the
surrounding environment. [58-61] This qualitative judgment entrains an untested



assumption that temperature stress has continuously dominated the growth of the
chosen trees over their mature lifetime. This assumption is absolutely central to the
entire method and rests upon the standard argument that the, “biological bases of tree
growth are essentially immutable.” [57] 

However, it is known that the genome of every tree confers highly mutable
responses to stress. [62-64] This mutability allows individual trees to survive the great
variety of environmental challenges, any of which may affect tree ring metrics. The
entire field of tree-ring paleo-thermometry is based on an insupportable claim of
immutability projected for centuries into the past to support qualitative judgments
taken in the present. 

To be physically valid, a judgment of temperature-limited growth must be based on
a falsifiable physical theory of tree-growth. Such a theory will specify the observables
that are dependent upon seasonal temperatures. In addition, the specific extraction of
temperatures from tree rings requires a physical relation, i.e., an equation that converts
tree ring metrics into degrees centigrade. However, no such theory is in evidence. Nor
is any such equation.

Failing those criteria, semi-empirical physics might suffice. For example,
controlled environment growth experiments might establish that tree-ring isotope
ratios, such as 13C/12C or 18O/16O, are strongly correlated with contemporaneous air
temperature. Empirically established correlation equations might permit extracting
historical air temperatures from living and dead trees. However, a specific and reliable
empirical correlation between air temperatures and tree ring isotope ratios does not yet
exist. [65-68] 

It is clear, therefore, that tree-ring proxy paleo-temperatures are grounded in
judgments that are invariably qualitative. Thus the “temperature” in tree-ring paleo-
thermometry has no quantitative physical basis. It reduces to an assigned physical
label, “Celsius,” that has no physical meaning.

2.2.2 Applied proxy paleo-thermometry.
In any proxy paleo-temperature study, standard statistical methods are applied to time-
series metrics obtained from tree rings, corals, speleothems, ice cores, or other
physical surrogates. [69-71] External temperature can impact the development of each
physical system, and each is therefore termed a temperature proxy. 

However, no proxy is grounded in a reliable physical theory. Even climatological
∂O18, the temperature proxy with the best grounding in physical theory, is confounded
by the unknown variability in the seasonal strengths and tracks of ancient monsoons.
[72, 73] Therefore, proxy series extending from the past into the present are typically
validated by statistical comparisons with their local temperature record. [74] Local
temperature records generally cover little more than the most recent 130 years. This
defines the record length over which any proxy correlation can be tested. Proxy series
that correlate with this 130-year range are assumed to be reliable temperature
indicators. Temperature indication is then assumed to extend uniformly into the past,
using the argument of constant developmental forces.

Tree ring metrics from old dead trees (snags) can be “wiggle-matched” in overlap
regions with modern tree-ring series and added in to produce a composite extending
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back centuries. Wiggle-matching is also used to produce long-term series from other
proxies. In the absence of physical theory, and sometimes despite physical theory [75],
chosen proxy series are processed statistically, typically normalized to unit standard
deviation, and then combined, scaled into coincidence with the 20th century
temperature record, and finally awarded the label, Celsius. 

The assignment of Celsius takes its entire justification from the prior judgments of
temperature-limited development. Various statistical correlations are demonstrated to
encourage a grant of confidence that a causal connection exists between proxies and
recent local temperatures. Statistics is thus substituted for physics, is used to assign
causality, and is made to pose material time series as temperature. In a classic of
scientific non-sequiturs, the entire field of consensus proxy paleo-thermometry has
decided that correlation equals causation, and also that correlation in the present
proves causation in the past. This is physics by fiat.

2.2.3 A promising extension of consensus paleo-science.
Perhaps an analogy can demonstrate the scientific void that is a consensus proxy
paleo-temperature reconstruction. To this end, a hypothesis is proposed that is as
qualitatively plausible as an expert judgment of temperature limited formation, and
that can likewise be justified by the full rigor of consensus statistics. The hypothesis
that attains the statistical merit of a consensus proxy paleo-thermometric
reconstruction attains the same level of causal meaning.

Beginning with the constancy assumption analogous to consensus proxy-
thermometry: to first-order, atmospheric CO2 should be constant in an unperturbed
Holocene climate; an assumption that can be referenced to and supported by published
studies. [76, 77]

Following from the foregoing, excursions in an otherwise constant Holocene
atmospheric CO2 imply the intensity of human inputs from agriculture, industry, and
use of fire. [43, 78, 79] This supposition can be rationalized into the distant past in a
manner directly analogous to the consensus extrapolations of temperature proxies into
past times. For example, paleo-atmospheric CO2 may be impacted by the stunning
growth of fire used in paleo-hunting [80, 81], by the historical trend in paleo-slash-
and-burn agriculture, [82] and by the documented increase in paleo-ore smelting and
lime calcining. [83-87] The spread of farming, [88] also opened virgin paleo-soils to
colonization by aerobic CO2-producing paleo-bacteria. [89, 90] 

It is plausible to deduce, therefore, that perturbations in paleo-atmospheric CO2
may reflect the history and intensity of human paleo-industriousness. [91] Current
human industriousness is reflected in Gross Domestic Product (GDP). If a correlation
is found to exist between modern CO2 and modern GDP, then paleo-CO2 can
obviously be used to infer a paleo-GDP. This construct expresses the full analytical
rigor of consensus proxy paleo-thermometry, namely that proxy correlations of today
immutably extrapolate to the temperatures of yesterday.

Figure 4 displays the relationship between the US Gross Domestic Product (US
GDP) and the recent trend in atmospheric CO2. The first and all-important supposition
is clearly verified: US GDP and atmospheric CO2 display a highly significant
correlation (0.995, P < 0.0001) over the years 1929 through 2012. Global GDP also
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produced a very good correlation with CO2 (1913-2003; R = 0.997, P < 0.0001),
thereby exhibiting its own statistical paleo-thermometric-like power. However, only
one 20th century world GDP datum is available prior to 1950, [92] severely reducing
the methodological calibration and verification ranges.

The plausibility argument plus the strong statistical association establishes as much
causality between modern GDP and modern atmospheric CO2 as there is between
modern air temperatures and modern proxy series. 

The consensus methodological authority that extends causality deep into the past is
calibration and verification of the proxy in the present. The standard approach, [69] is
to divide the measurement data into the ‘calibration range’ and the ‘verification range.’

Under this protocol, 1929-1979 was chosen as the US GDP calibration range. The
proxy (atmospheric CO2) was then regressed against the target (US GDP) over the
calibration years, producing the calibration line (Figure 4, inset a; US GDP =
0.171×[CO2]ppmv – 51.49). The correlation (R2=0.98, P < 0.0001) is well within the
halleluiah norm of consensus paleo-thermometry.

The calibration line must now predict the verification half of the target data (US GDP,
1980-2012). With a successful verification, GDP-CO2 causality will be demonstrated to
the professional rigor of a consensus proxy paleo-temperature reconstruction. One can
then just as confidently elaborate the relationship off into past time. 

Figure 4 inset b shows that the verification was successful: predicted US GDP
correlated  with observed US GDP at the 0.99 level. When carried out in reverse,
calibrating on 1980-2012 and verifying on 1929-1979, equally good results were
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Figure 4. 1929-2012 trend in: (), United States Gross Domestic Product, and; (⋅⋅⋅⋅),
atmospheric CO2,; correlation R = 0.995. Inset a: (o), calibration 1929-1979, CO2 vs.
US GDP (see text); (), linear least squares fit. Inset b: (o), verification 1980-2012,

observed US GDP vs. predicted US GDP; correlation R = 0.99, P<0.0001; (),
linear least squares fit (R2=0.95).



obtained (calibration R = 0.99, P<0.001; verification R = 0.98, P<0.0001). This
correlation equals causation equation thus confers consensus paleo-thermometric
stature on the relationship between atmospheric CO2 and GDP.

This study is now in a strong position to analogize from the widely accepted logic
of consensus proxy paleo-thermometry that, ‘recent proxies correlate with recent
temperatures therefore paleo-proxies measure ancient temperatures.’ 

In the bright light of this science, Figure 4 implies just as strongly that, recent CO2
correlates with recent GDP, therefore paleo-CO2 measures ancient GDP. When the
correlation equation is informed with recovered ancient CO2 anomalies, a paleo-GDP
covering past times is reconstructed.  Following Mark Twain, [93] it is now possible
to extrapolate GDP off into nether historical regions where no measureable GDP can
possibly exist.

Announcing the new field of consensus paleo-economics: the intensity of economic
activity of past continental-scale societies can now be statistically reconstructed
during times when societal GDP went unrecorded. So, for example, the paleo-CO2
from the ice cores of Alpine glaciers can be used to illuminate and track the paleo-
economic activity of most of ancient Europe. Historians of the Roman Empire should
note their breakthrough opportunities. [94] The snows of Kilimanjaro record equally
well the economic level of the ancient and mysterious (until now) Kingdom of Meroe,
and those of Mt. Ararat may as well reveal the economic climate experienced by Noah.
Such is consensus proxy paleo-thermometry.

Clearly, the CO2-GDP paleo-extrapolation is spurious. The global carbon cycle is
not known to anywhere near the required resolution, and most importantly the physical
theory of terrestrial CO2 is incomplete. [95-97] These are the same failings that
disqualify consensus proxy paleo-thermometry as science. Nevertheless, the
methodological rigor of consensus proxy paleo-thermometry is fully in view. This
light-hearted parody thus conveys a serious point: statistics is no substitute for physics.
Statistical validity does not preclude causal vacuity. Correlation alone never equals
causation. However, the entire purportedly scientific case for consensus paleo-
thermometry rests upon correlation = causation. This diagnosis follows from the
purely statistical methodology. 

Even further, it is physically unwarrantable to assume a dominant and constant
temperature-reflective response operates across deep time. In the case of tree-ring
series, the purely qualitative judgment of temperature sensitivity is quantitatively fatal,
and the further assumption of biological constancy is already refuted in the
professional literature. [64, 98, 99] Absent any reliable physical theory at any stage of
analysis, consensus proxy paleo-thermometry has no physical meaning.

This criticism is not vitiated by the use of principal component analysis (PCA) to
extract numerically orthogonal series from proxies that have been qualitatively judged
as temperature limited. [69, 100, 101] It is not controversial that the numerically
orthogonal constructs of PCA have no distinct physical meaning. [102, 103] They are
never known a priori to represent any physical magnitude. As far back as 1901,
Spearman noted that, “an estimate of the correlation between two things is generally
of little scientific value if it does not depend unequivocally on the nature of the
things...” [104] Qualitative judgments filtered through numerical constructs are no
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route to physical orthogonality, and mere correlation with temperature does not
establish a unique physical meaning.

Even the statistical validity of consensus proxy paleo-temperatures has been
questioned, resulting in the following observation: 

“Natural climate variability is not well understood and is probably quite large.
It is not clear that the proxies currently used to predict temperature are even
predictive of it at the scale of several decades let alone over many centuries.”
[105, 106]

Thus, the temperature “signal” in a physical proxy is invisible to statistical analysis. In
the sense of climate physics, the “signal” is thus far unidentifiable. Consensus proxy-
reconstructed global paleo-temperatures are often scaled in tenths of Celsius, e.g.,
refs. [107-110]. Both attribution and precision are utterly unjustifiable. As presently
practiced, consensus proxy paleo-thermometry is pseudo-science. [111]

2.3 The global averaged surface air temperature (GASAT) record 
The GASAT record is produced using the monthly temperature records from millions
of individual land and sea surface temperatures (SSTs) distributed around the world.
[112, 113] Despite that a ‘globally averaged temperature’ is physically meaningless,
[114] it is nevertheless the metric widely accepted as proving that global climate has
warmed since 1880. It is also widely agreed that the GASAT has increased by about
0.8±0.2 Celsius. [49, 115] In light of this, little doubt is expressed about the rate and
magnitude of atmospheric warming, or that they are statistically significant. Any
continued rise in the GASAT is itself taken as a proof that continued emission of
GHGs is thermally dangerous. 

However, a close examination of the global record reveals that the temperatures
themselves have enjoyed a curious and unspoken canonization. That is, the reported
monthly magnitudes are always taken at face value. The only argument booted about
is whether they pristinely represent climate, or not. It’s as though the measured values
themselves, whether correct or incorrect, are nevertheless known with perfect
accuracy.

Nevertheless, systematic instrumental error is always present because instruments
are inevitably imperfect. [116] Systematic error is non-random, and a component of
the temperature measurement itself. Solar heating, snow albedo, and variable winds
inject instrumental errors into the modern land-based record because they impact the
stability and response of temperature sensors. The consequent systematic error has
been measured using ideal-condition calibration experiments. [117-120] The error
produced by well-maintained and well-sited instruments is the minimal error to be
expected under typical field conditions. Likewise, the sea-surface temperature (SST)
measured by ships and buoys is also subject to large-scale systematic errors. [121-124]
Despite this ubiquity, systematic sensor measurement error is completely neglected in
the published record of global averaged surface air temperatures. [125] 
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Figure 5 shows examples of error profiles in land-surface (5a) and SST (5b)
temperature measurements. Figure 5b typifies the error that infects the ship engine-
intake data sets, [126] which contribute by far the greatest part of the 20th century SST
record.

The minimal uncertainty in an individual land-surface temperature measurement
coming from a standard temperature sensor, even while operating under ideal field
conditions, has been evaluated as ±0.46 C. [125] Combining this ±0.46 C with the
estimated ±0.2 C uncertainty due to site inhomogeneities [115, 127], the root-mean-
square (r.m.s.) minimum uncertainty in the averaged global land-surface air
temperature is 1σ = ±0.50 C.

The SST measurement error profile shown in Figure 5b derived from a study
employing twelve US military transport ships engaged off the US central Pacific coast,
that included 6826 pairs of observations. The obviously skewed distribution of error
in Figure 5b was called, “a typical distribution of the differences” between the
measured and the true SST. The full data set over the entire fleet showed a mean bias
error of 0.7 C, and 1σmean = ±0.9 C systematic measurement error. 

Land and SST systematic measurement errors have never been factored into the
uncertainty reported for the GASAT record. The reason for this neglect is that
measurement error is invariably assumed to be random, [115, 128-130] and that the
Central Limit Theorem (CLT) applies carte blanche. [126] In brief, the CLT says that 

the distribution of points taken from an overall random process will 

approach normality at the large N limit no matter the shapes of the data point
distributions of the individual subsidiary processes, xi. [131] When an overall error

∑=
=

X xN i

i

N
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Figure 5: Systematic temperature measurement error found during calibration tests
of: a. a platinum resistance thermometer inside a Cotton Regional Shelter (Stevenson

Screen), σ = ±0.53 C, [117], and; b. a US military ship-board engine room intake
thermometer, σ = ±1.1 C, [122]. The dashed vertical line marks zero error.



process is random, the error variance diminishes as σε
2 /N, where N is the number of

measurements entering an average. When N is very large, as in the compilation of an
annual global surface air temperature, the σε

2 variance of sensor measurement error is
reckoned to be negligible.

Variance reduction by appeal to the CLT is justified when the overall distribution
of error is known to be random. However, there is no a priori reason to expect that
systematic errors should be normally distributed at any N. [37, 132, 133] Further, the
assumed global relevance of the CLT to the systematic measurement error of
temperature sensors has never been empirically established. A recent comparison of
ship SST measurements with equivalent SSTs measured using the Advanced Along-
Track Scanning Satellite microwave radiometer aboard the European Envisat
produced skewed non-random difference profiles. [126] Thus, neither the error
profiles discussed here nor others in the published literature support the assumption of
random measurement error. Invocation of the CLT to dismiss temperature sensor
measurement error is therefore unjustified on any grounds.

For the present discussion let the minimal 1σ = ±0.5 C land surface error also
represent the minimum of uncertainty due to the systematic error inherent within the
SST record. The typicality of the SST profile in Figure 5b ensures that the average 20th

century SST systematic measurement error almost certainly exceeds ±0.5 C. More
detailed analyses of these matters will be reported elsewhere. 
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Figure 6. The 20th century GASAT record, HadCRUT3-gl. [112] The 1σ uncertainty
bars extend across ±0.5 C. Thus, 2σ = ±1 C = 1.25 × the entire 160-year increase.

A lower limit of uncertainty due to systematic measurement error in the land plus 

SST GASAT record is then, . Figure 6 

shows the effect of this uncertainty. The 20th century GASAT record is

σ± = ± × + × = ±C C C1 0.3 (0.5 ) 0.7 (0.5 ) 0.5global
2 2



indistinguishable from zero at the 95% confidence interval. Thus, it is not knowable
whether either the magnitude or the rate of air temperature warming since 1850 has
been in any way unusual.

3. CONCLUSION
With the recovery of ignored systematic error in the GASAT record, it is found that
scientific negligence has plagued all of consensus climatology. For 25 years the field
has misrepresented its state of knowledge. Neither the scenarios produced using
climate models, nor the consensus paleo-temperatures purported from proxies, nor the
GASAT record can escape this judgment. 

The following conclusions are entrained by the foregoing:
1. The poor resolution of present state-of-the-art CMIP5 GCMs means the

response of the terrestrial climate to increased GHGs is far below any level of
detection.

2. The poor resolution of CMIP5 GCMs means all past and present projections of
terrestrial air temperature can have revealed nothing of future terrestrial air
temperature. 

3. The lack of any scientific content in consensus proxy paleo-temperature
reconstructions means nothing has been revealed of terrestrial paleo-
temperatures. 

4. The neglected systematic sensor measurement error in the GASAT record means
that neither the rate nor the magnitude of the change in surface air temperatures
is knowable. 

Therefore, 5: Detection and attribution of an anthropogenic cause to climate change
can not have been nor presently can be evidenced in climate observables.
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